应用数学教案7篇

时间:
Surplus
分享
下载本文

教师在撰写教案时,往往会考虑到课程内容的系统性与连贯性,大家都知道,优质的教案应当具备清晰的结构和逻辑,下面是美篇吧小编为您分享的应用数学教案7篇,感谢您的参阅。

应用数学教案7篇

应用数学教案篇1

教学目标

使学生认识分数除法应用题的特点,能根据应用题的特点理解解题思路和解题方法,学会解答基本的分数除法应用题。

进一步培养学生自主探索问题解决的能力和分析、推理和判断等思维能力,提高解答应用题的能力。

教学重难点

分数除法应用题的特点及解题思路和解题方法。

教学准备

教学过程设计

教学内容

师生活动

备注

一、 复习引新

二、教学新课

三、巩固练习

四、课堂小结

五、作业

1、先说出单位1,再说出数量关系式

(见课件)

2、做43页复习题

问:这道题怎样想?

3、引入新课

解答分数应用题,要先确定单位1,再找出题目中的数量关系式,然后列式。这节课就继续按照这样的思路来学习分数应用题。

1、教学例1

(1)出示例1,学生读题,说明条件和问题。

问:关键句是哪一句?谁占果树总棵数的2/5?

单位1是谁?

(2)让学生画出线段图

(3)学生独立列式解答。

(4)讨论:哪种方法比较简单?

指出:求单位1的应用题一般来说用方程解。

2、比较解法

请同学们比较例1和复习题。

问:在条件、问题上有什么相同点和不同点?

在解法上有什么相同点和不同点?

小结:解答分数应用题,要先确定单位1,再找出题目的数量关系再解答。

1、做练一练

让学生先写出数量关系式再解答。

2、做练习十第4题

问:要怎样想?根据什么来列方程?

今天学了什么?解答此类应用题要怎样思考、分析?

练习十第2、3题

课后感受

本节课的内容比较简单,学生有一定的.基础,所以花一定的时间让学生画线段图,让学生提高解题的能力,这对学习较复杂应用题有一定的帮助!

应用数学教案篇2

教学目标:

1.通过复习,使学生能够运用所学知识,采用列方程的方法解答应用题.

2.让学生独立思考,合作交流,确定等量关系,正确用方程解答应用题

3.培养学生利用恰当的方法解决实际问题的能力。

教学重点:

通过复习,使学生弄请已知量与未知量的联系,找出题目中的等量关系.

教学难点:

通过复习,使学生能够准确的找出题目中的等量关系.

教学过程:

一、复习准备.(p107)

1.找出下列应用题的等量关系.

①男生人数是女生人数的2倍.

②梨树比苹果树的3倍少15棵.

③做8件大人衣服和10件儿童衣服共用布31.2米.

④把两根同样的铁丝分别围成长方形和正方形.

( 学生回答后教师点评小结)

我们今天就复习运用题目中的等量关系解题.(板书:列方程解应用题)

二、新授内容

1、教学例3、

(1)、一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千米?

①.读题,学生试做.

②.学生汇报(可能情况)

(90+75)×4

提问:90+75求得是什么问题?再乘4求的是什么?

90×4+75×4

提问:90×4与75×4分别表示的是什么问题?

(由学生计算出甲乙两站的铁路长多少千米。)

(2)、甲乙两站之间的铁路长660千米,一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站。经过多少小时相遇?

(先用算术方法解,再用方程解)

①、660÷(90+75)=?

②方程

解: 设经过x小时相遇,

(90+75)×x =660 或者, 90×x +75×x =660

让学生说出等量关系和解题的思路

教师小结(略)

(3)、甲乙两站之间的铁路长660千米。一列客车以每小时90千米的速度从甲站开往乙站,同时有一列货车从乙站开往甲站,经过4小时相遇。货车每小时行多少千米?

( 先用算术方法解,再用方程解)

①、(660—90×4)÷4=?

②、方程

解:设货车每小时行x千米

90×4+ 4x = 660 或者(90 + x )×4 = 660

让学生说出等量关系和解题的思路

教师小结(略)

让学生比较上面三道应用题,它们有什么联系和区别?

比较用方程解和用算术方法解,有什么不同?

教师提问:这两道题有什么联系?有什么区别?

三、巩固反馈.(p109---1题)

1.根据题意把方程补充完整.

(1)张华借来一本116页的科幻小说,他每天看x 页,看了7天后,还剩53页没有看.

_____________=53

_____________=116

(2)妈妈买来3米花布,每米9.6元,又买来x千克毛线,每千克73.80元.一共用去139.5元.

_____________=139.5

_____________=9.6×3

(3)电工班架设一条全长x 米长的输电线路,上午3小时架设了全长的21%,下午用同样的工效工作1小时,架设了280米.

_____________=280×3

2.(p110----4题)解应用题.

东乡农业机械厂有39吨煤,已经烧了16天,平均每天烧煤1.2吨.剩下的煤如果每天烧1.1吨,还可以烧多少天?

小结:根据同学们的不同方法,我们需要具体问题具体分析,用哪种方法简便就用哪种方法.

3.思考题.

甲乙两个港相距480千米,上午10时一艘货船从甲港开往乙港,下午2时一艘客船从乙港开往甲港.客船开出12小时后与货船相遇.如果货船每小时行15千米.客船每小时行多少千米?

四、课堂总结.

通过今天的复习,你有什么收获?

五、课后作业.

(p110---5题)不抄题,只写题号。

板书设计:

列方程解应用题

等量关系 具体问题具体分析

例3:一列火车以每小时90千米的速度从甲站开往乙站,同时有一列货车以每小时75千米的速度从乙站开往甲站,经过4小时相遇,甲乙两站的铁路长多少千

应用数学教案篇3

学材分析

重点:利息和税款的计算

难点:对所涉时关键:懂得利率、保险费率和税率的意义

间的理解

学情分析

学情分析:学生学习了常用百分率、求一个数的百分之几是多少的应用题的基础上进行教学的。为实际应用作好准备。

学习目标

1、能利用百分数的有关实际问题,提高解决实际问题的能力。

2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

导学策略

尝试教学法、练习法

教学准备

幻灯片、小黑板

教师活动

学生活动

一、 谈话导入

师:你收到过压岁钱吗?你是怎样支配的?

(如果学生没有提到银行,则由教师引导揭题)

二、探究新知

1、利息

师:这节课我们一起走进银行,解决银行中与我们有联系的数学问题。

师:你了解银行的一些什么知识?

师:如果陈杰存入银行1000元钱,银行的年利率是0.65%,存一年有多少利息?二年呢?五年呢?

师根据生口答进行板书

师:我们该怎样计算利息?你能用一个公式表示吗?(师板书)

2、利息税

从1999年11月1日起,个人在银行存款所得利息应按20%纳税,这就是利息税。国家将这部分税收用于社会福利事业。

算一算陈杰1年、2年、5年各应缴多少利息税?

3、自学例题

4、巩固练习。

(1)小调查:先让学生做调查,然后思考存两年有多少种存法?估计一下哪种存法的利息多,再实际计算。最后全班交流。

(2)练一练1--3

5、总结:你这节课有何收获?

6、作业

学生做调查后算一算那种方法更合理。

教学反思

这节课挺实用的所以教学效果教好。

课题 百分数的应用(四)的练习课第8课时(总第21课时)

应用数学教案篇4

教学目标

1、能利用百分数的有关知识,解决一些与储蓄有关的实际问题 ,提高解决实际问题的能力。

2、结合储蓄等活动,学习合理理财,逐步养成不乱花钱的好习惯。

教学重点

本金、利息、利率的含义。

教学难点

计算定期存款的利息。

教学过程

一、师生交流

课前布置学生分小组到银行去调查利率并了解有关储蓄的知识。

师:同学们到银行去调查利率并了解有关储蓄的知识。哪个小组愿意和大家交流你们的调查情况。

让学生汇报调查的情况,并出示课本的银行存款利率表。

师:同学们真了不起,了解了这么多。大家知道,钱存进银行里,不但能支援国家建设,还能得到利息。怎样存能得到的利息多一些呢?下面老师和大家一起来探讨。

二、探讨新知

1、计算公式

师:我们去银行存钱,存进银行的钱,叫做本金。取款时银行多付的钱叫做利息。利息占本金的百分比叫做利率。银行存款的利率,国家会根据经济发展的情况有所调整,大家调查的银行的利率和我们书上的银行的利率,比较一下就会发现不同。

利息的多少由存款的多少、利率的高低和存款的时间的长短有关系。

请学生讨论利息的算法,老师适当的提示。

板书 利息=本金×利率×时间

全班齐读公式。

师:要求利息就必须要知道什么?

2、计算利息

师:笑笑和淘气知道你们会计算利息的方法,想请你们帮他俩算一算,他们可以得多少利息,你们愿意不愿意帮啊?下面我们一起来算。

出示题目:

笑笑说:300元压岁钱在银行存一年其整存整取,到期时有多少利息?

淘气说:我存三年期的300元,到其实有多少利息? 师:笑笑存的本金是多少?存款的时间是多长?利率是多少?

怎样算?淘气呢?

学生回答后,师板书。

笑笑得到的利息:300×2.52%×1=7.56(元)

淘气得到的利息:300×3.69%×1=33.21(元)

师:笑笑和淘气存同样多的钱,因为存的时间长短不同,利率也就不同,所以得到的利息也不同。

师:同学们在调查中看到了利息税,从1999年11月1日起,个人在银行存款所得利息应纳税,这就是利息税。国家将这部分税收用于社会福利事业。从1999年11月1日至2007年8月14日,利息税是利息的20%,2007年8月15日至2008年10月7日,利息税是利息的5%,从2008年10月9日起,免收利息税。如无特殊说明,今后我们在计算时不要求计算利息税。

三、巩固练习

1、李老师把2000元钱存入银行,整存整取五年,年利率按4.14%计算。到期时,李老师的本金和利息共有多少元?

先让学生自己计算,在全班讲评。

2、光明小学为400名学生投保“平安保险”,保险金额每人5000元,保险期限一年。按年保险费率0.4%计算,全校共应付保险费多少元

先提醒学生说出保险金额、年保险费率的含义,再让学生计算。

四、课后总结

1、同学们现在已经知道了把压岁钱存到银行可以获得利息,而存款方式有好几种,今后打算怎么处置自己的压岁钱呢?

如果把它存到银行,该怎样存呢?

建议学生课后亲自到银行存一次钱。

2、这节课你学到了哪些知识?

五、布置作业

?百分数的应用(四)》的课堂教学设计说明

本节课的主要内容——利息的计算,与生活息息相关,在设计这节课时,注意(1)关注学生发展,整合教学目标。根据教材特征和学生的生活背景,按照关注学生发展理念的认识,确立各项技能目标,努力使学生在发展性领域和知识性领域获得发展、构建自我。(2)充分联系学生的实际生活应用,将课前调查知识、课后实践等知识与本课教学内容“利息”组合在一起,充分理解了有关利息的知识。并在相关问题的解决中,相应地获得了终身发展必备的知识技能。(3)培养学生能力,大胆地开放教学过程。课前让学生分组进行有关储蓄知识的调查,搜集有关相关的信息,培养学生搜集信息的意识和实际调查的能力,分组调查中培养学生的合作精神和能力;课堂教学时让学生通过小组交流,把搜集到的信息进行汇报整理,总结利息的求法,培养学生信息的交流和处理能力;课后要求学生去体验储蓄的过程,培养学生良好的生活习惯和利用知识解决问题的能力。(4)针对学生差异,实施多元评价。针对学生的个性差异采取各种教学活动,给学生提供各种展示自己的机会和空间,是不同的学生认识了自我,有利于他们的再发展。

应用数学教案篇5

教学内容:

教材第77页例4

教学目标:

1、进一步加深对“倍”的含义的理解。

2、学会解答求一个数的几倍是多少的应用题,并能够正确进行解答。

3、初步学会分析数学信息与所求问题的联系,学会看线图。

教学重点:

1、学会解答求一个数的几倍是多少的应用题,并能够正确进行解答。

2、初步学会分析数学信息与所求问题之间的联系,学会看线段图。

教学难点:

理解题目中关于两个数量之间倍数关系的语句。

教学准备:

教材中的图。

教学过程:

一、情景导入,激发兴趣。

1、口算练习。

6×75×67×43×5

4×65×56×32×6

7×23×77×72×4

6×64×45×23×6

2、回答。

4个6可以说成6的()倍。

3个5可以说成5的()倍。

5个4可以说成()的()倍。

设计意图:复习引入,巩固倍的概念,为新知做好铺垫。

二、合作交流,掌握算理。

1、教学例4。

1)出示图,学生观察图并了解信息。

2)学生提出数学问题,并和同桌进行交流。

3)在教师的引导下,解决求一个数的几倍是多少的问题。

根据教师指向的问题,先独立解决。

设计意图:尝试着让学生自行解决,锻炼学生独立解决问题的能力,培养自主、独立的学习习惯。

在各自的学习小组内交流自己的解答方法。

全班进行交流。

组织学生进行汇报。教师画出线段图。

设计意图:用直观的线段图帮助学生理解。

三、学习效果测评

引导完成教材78页1~3。

四、课堂:

今天你又学到了哪些知识?

教学反思:

应用数学教案篇6

教学目标

1.巩固分数连除应用题的分析方法,掌握此类题的结构及数量关系。

2.进一步提高学生的分析概括能力及解题能力。

教学重点

找准单位1,巩固分数除法应用题的解答方法。

教学难点

掌握分数连除应用题的结构及数量关系。

教学过程

(一)复习

(投影)

1.找准单位1,并列式解答。

2.出示准备题。

(1)读题,请学生找出已知条件和未知条件。

(3)老师指导学生画图。老师先画一条线段表示美术组人数后提问:谁和美术组比?怎么画?(生物组和美术组比,可以画在美术组上面。)谁和生物组比?(航模组和生物组比,应画在最上面。)

提问:美术组,生物组,航模组三个数量之间有什么关系。

(4)请一名同学列式解答,然后订正。

(二)讲授新课

老师把准备题进行改编。

指名读题,找出已知条件和未知条件。

1.指导学生画图。

提问:这道题中有哪几个量?需用几条线段来表示?(有三个量,用三条线段表示。)

提问:和准备题比,已知条件和未知条件发生了什么变化?(给了航模组人数,求美术组人数。)

老师按学生的回答,把准备题的图示进行修改。

2.找出含有分率的句子,进行分析。

(3)这道题中有几个单位1?美术组、生物组、航模组三量之间有什么关系?

(4)根据三量之间的关系,列出等量关系式。

(5)这个式子的等号两边相等吗?为什么?人。)

学生回答,老师板书:

3.根据等量关系列方程解答。

提问:根据上面的分析,应设谁为x?(设美术组人数为x。)

老师板书:

解 设美术组有x人。

答:美术组有30人。

看方程提问:

(3)为什么要设美术组人数为x?

(因为只有知道美术组的人数,才能求出生物组的人数。航模组又和生物组比,所以设美术组为x人。)

师小结:对于含有两个已知一个数的几分之几是多少,求这个数这样条件的复合应用题,首先要找准单位1,在两个单位1都是未知的情况下,根据题中条件,准确设定其中一个单位1的量为x。

(三)巩固练习

(投影)

先讨论以下问题,再动笔做:找出单位1,画图并分析数量关系。

2.看图,找出数量间相等的关系,并列方程解答:

(1)说出这个图所反映的等量关系式。

(2)师小结:这道题出现了小汽车是大汽车的4倍,而不是几分之几,但它们的数量关系不变,解题思路也一样。

师:这道题和前两题比,前两题是不同数量相比较,这一道题是同一数量相比较,我们可以画单线图分析数量关系。(老师指导画图。)

三好生4人。

学生动笔做,老师带领学生订正。

的高是多少厘米?

根据题意填空:

是( )厘米。设( )为x。

果树有多棵?

(四)课堂总结

今天我们学习的应用题有什么特点?(今天学习的是由过去学过的两道分数除法应用题组成的'复合题。)

这类题分析解答时应注意什么?(弄清有哪三个量,它们之间什么关系?找出等量关系,确定设哪个量为x,再列方程解答。)

(五)布置作业

(略)

课堂教学设计说明

本节课讲的是分数连除应用题,是连续求一个数的几分之几是多少的逆解题,所以本课由分数连乘应用题引入,通过改变已知条件和未知条件,使之转变成一道分数连除应用题,为帮助学生理清数量关系,抓住新旧知识的共同因素,列方程解应用题打下了基础。本教案还重视分析思路的训练,通过设计提问和画线段图分析数量关系,为学生自己解题奠定了基础。在练习的设计中,采用不同形式,由扶到放,不但一步步强化了学生的分析思路,也进一步培养了学生逻辑思维能力。

应用数学教案篇7

教学目标

1.通过学习,使学生掌握连乘应用题的基本结构和数量关系,学会列综合算式.

2.使学生学会用两种方法解答连乘应用题的同时能用一种解法检验另一种解法.

3.培养学生的分析能力和灵活应用知识的能力,提高用简炼的数学语言表达的能力.

4.激发学生的学习兴趣,体会生活中处处有数学.

5.培养学生认真检验的好习惯.

教学重点

认识连乘应用题的数量关系,初步学会两种解答方法.

教学难点

理解连乘应用题的两种解题思路,掌握解题方法.

教学过程

一、复习铺垫.

1.先分析数量关系再解答.

(1)某车间每班有4个组,每组有11人,每班有多少人?

(2)一辆卡车可以装30袋化肥,每袋重50千克,一辆卡车能装多少化肥?

2.演示动画“连乘应用题”

根据动画演示的内容分别补充问题,再解答.

(1)一个商店运进5箱热水瓶,每箱12个,_______________?

(2)每箱有12个热水瓶,每个热水瓶卖35元,______________?

3.引入新课.

教师提问:复习中的应用题都是两个已知条件和一个问题,它们的数量关系共同的特点是什么?(都是求几个相同加数的和用“×”计算.)

把动画复习的两道应用题连,让学生把复习中的两道题合并成一道题.教师根据学生的叙述板书题目,引出例1.

教师导入:看来,在我们的生活中不光会遇到比较简单的实际问题,还会有这样稍复杂的问题等待我们去解决.今天我们就一起来共同学习:应用题.(出示课题)

二、探究新知.

1.出示例1:一个商店运进5箱热水瓶,每箱12个.每个热水瓶卖35元,一共可以卖多少元?

(1)指名读题,并说出已知条件和问题.

继续演示动画“连乘应用题”,实物图逐步转化为线段图.

(2)小组讨论:你准备怎么解答这道题?并说出解答的思路.

学生以小组为单位讨论,教师巡视,并参与学生的讨论.

(3)汇报讨论的结果,并说说你是怎么想的?

学生可能想到:

方法1:要求一共卖多少元,需要知道每箱卖多少元和一共有多少箱.已知共有5箱,未知每箱多少元.因此,要首先求出每箱多少元.已知每个35元,每箱 12个,求出每箱卖多少元就是求12个35是多少,用35×12=420(元),再求出5箱一共卖多少元,就是5个420是多少,用 420×5=2100(元).

板书:①每箱多少元?

35×12=420(元)

5箱一共多少元?

420×5=2100(元)

方法2:要求一共可以卖多少元,需要知道每个卖多少元和一共多少个.已知每个卖11元,未知一共多少个,先要求出一共多少个.每箱有12个,有5箱,求一共多少个就是求5个12是多少,用12×5=60(个),再求一共卖多少元,就是求60个35是多少,用35×60=2100(元).

板书:②5箱一共多少个?

12×5=60(个)

5箱一共多少元?

35×60=2100(元)

(4)教师谈话:像这样的两步计算应用题,可以分步列式,也可以列综合算式,请同学们自己试着将这两种解法分别列成综合算式.

学生动笔列式,汇报订正:

35×12×535×(12×5)

教师提问:第一种解法是先求的什么?再求什么?第二种解法是先求什么?再求什么?为什么要加小括号?不加行不行?

(引导学生说出第一种解法是先求的每箱多少元,再求5箱一共多少元.第二种解法是先求5箱一共多少个,再求5箱一共多少元.因为运算中要先算12×5,就必须加小括号,否则运算顺序就变了,不符合题意.)

(5)比较、辨析:这两种解法有什么区别和联系?

明确两种解法的区别是:第一种解法是先求的每箱多少元再求5箱一共多少元,第二种解法是先求5箱一共多少个再求5箱一共多少元;思路不同,用的已知条件也不同.联系是:最后都能求出来“5箱一共多少元”.

应用数学教案7篇相关文章:

10以内的单双数大班数学教案7篇

数学教学活动教案7篇

人教版三年级数学下册教案全册教案及反思7篇

小班数学颜色配对教案7篇

大班数学倒数教案7篇

数学分类的教案7篇

年级数学上册教案最新7篇

幼儿安全教案大班教案7篇

数学测量活动教案7篇

造飞机教案中班教案7篇

应用数学教案7篇
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档文档为doc格式
点击下载本文文档
127561